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Introduction

The Original Context
The nominal categories model (Bock, 1972, 1997) was originally pro-
posed shortly after Samejima (1969, 1997) described the first general item 
response theory (IRT) model for polytomous responses. Samejima’s graded 
models (in normal ogive and logistic form) were designed for item responses 
that have some a priori order as they relate to the latent variable being 

Editor Introduction: This chapter elaborates the development of the most general polytomous 
IRT model covered in this book. It is the only model in this book that does not assume ordered 
polytomous response data and can therefore be used to measure traits and abilities with items that 
have unordered response categories. It can be used to identify the empirical ordering of response 
categories where that ordering is unknown a priori but of interest, or it can be used to check whether 
the expected ordering of response categories is supported in data. The authors present a new 
parameterization of this model that may serve to expand the model and to facilitate a more wide-
spread use of the model. Also discussed are various derivations of the model and its relationship to 
other models. The chapter concludes with a special section by Bock, where he elaborates on the 
background of the nominal model.
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44    ■   David Thissen, Li Cai, and R. Darrell Bock

measured (θ); the nominal model was designed for responses with no pre-
determined order.

Samejima (1969) illustrated the use of the graded model with the analy-
sis of data from multiple-choice items measuring academic proficiency. The 
weakness of the use of a graded model for that purpose arises from the fact 
that the scoring order, or relative degree of correctness, of multiple-choice 
response alternatives can only rarely be known a priori. That was part of the 
motivation for the development of the nominal model. Bock’s (1972) pre-
sentation of the nominal model also used multiple-choice items measuring 
vocabulary to illustrate its application. Ultimately, neither Samejima’s (1969, 
1997) graded model nor Bock’s (1972, 1997) nominal model has seen wide-
spread use as a model for the responses to multiple-choice items, because, in 
addition to the aforementioned difficulty prespecifying order for multiple-
choice alternatives, neither the graded nor the nominal model makes any 
provision for guessing. Elaborating a suggestion by Samejima (1979), Thissen 
and Steinberg (1984) described a generalization of the nominal model that 
does take guessing into account, and that multiple-choice model is preferable 
if IRT analysis of all of the response alternatives for multiple-choice items 
is required.

Current uses
Nevertheless, the nominal model is in widespread use in item analysis and 
test scoring. The nominal model is used for three purposes: (1) as an item 
analysis and scoring method for items that elicit purely nominal responses, (2) 
to provide an empirical check that items expected to yield ordered responses 
have actually done so (Samejima, 1988, 1996), and (3) to provide a model for 
the responses to testlets. Testlets are sets of items that are scored as a unit 
(Wainer & Kiely, 1987); often testlet response categories are the patterns 
of response to the constituent items, and those patterns are rarely ordered a 
priori.

The Original Nominal Categories Model
Bock’s (1972) original formulation of the nominal model was

 
T u k T k z

z
k

i i
( | ; ) ( ) exp( )

exp( )
= = =

∑
θ a c,  (3.1)

in which T, the curve tracing the probability that the item response u is in 
category k is a function of the latent variable θ with vector parameters a and c. 
In what follows we will often shorten the notation for the trace line to T(k), 
and in this presentation we number the response alternatives k m= −0 1 1, ,...,  
for an item with m response categories. The model itself is the so-called mul-
tivariate logistic function, with arguments

 z a ck k k= +θ  (3.2)

Y102002_Book.indb   44 2/17/10   4:26:50 PM



The Nominal Categories Item Response Model    ■    45

in which zk is a response process (value) for category k, which is a (linear) 
function of θ with slope parameter ak and intercept ck. Equations 3.1 and 3.2 
can be combined and made more compact as

 
T k a c

a c
k k

i i i
( ) exp( )

exp( )
=

+
∑ +

θ
θ  (3.3)

As stated in Equation 3.3, the model is twice not identified: The addition 
of any constant to either all of the aks or all of the cks yields different parame-
ter sets but the same values of T(k). As identification constraints, Bock (1972) 
suggested
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implemented by reparameterizing, and estimating the parameter vectors α 
and γ using

 a = T c = T` fand  (3.5)

in which “deviation” contrasts from the analysis of variance were used:
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 (3.6)

With the T matrices defined as in Equation 3.6, the vectors (of length 
m − 1) ` and f may take any value and yield vectors a and c with elements 
that sum to zero. As is the case in the analysis of variance, other contrast (T) 
matrices may be used as well (see Thissen and Steinberg (1986) for examples); 
for reasons that will become clear, in this presentation we will use systems 
that identify the model with the constraints a c1 1 0= =  instead of the original 
identification constraints.

Figure 3.1 shows four sets of trace lines that illustrate some of the range of 
variability of item response functions that can be obtained with the nominal 
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model. The corresponding values of the parameter vectors a and c are shown 
in Table 3.1.

The curves in the upper left panel of Figure 3.1 artificially illustrate a 
maximally ordered, centered set of item responses: As seen in the leftmost 
two columns of Table 3.1 (for Item 1) the values of ak increase by 1.0 as k 
increases; as we will see in a subsequent section, that produces an ordered 
variant of the nominal model. All of the values of ck are identically 0.0, so 
the trace lines all cross at that value of θ. The upper right panel of Figure 3.1 
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FIGuRE 3.1 Upper left: Trace lines for an artificially constructed four-alternative item. Upper right: 
Trace lines for the “Identify” testlet described by Thissen and Steinberg (1988). Lower left: Trace 
lines for the number correct on questions following a passage on a reading comprehension test, using 
parameter estimates obtained by Thissen, Steinberg, and Mooney (1989). Lower right: Trace lines for 
judge-scored constructed-response item M075101 from the 1996 administration of the NAEP math-
ematics assessment.

TABLE 3.1 Original Nominal Model Parameter Values for the Trace Lines Shown 
in Figure 3.1

Response 
Category (k)

Item 1 Item 2 Item 3 Item 4

a c a c a c a c

0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.0
1 1.0 0.0 0.0 –0.9 0.2 0.5 0.95 1.2
2 2.0 0.0 1.1 –0.7 0.7 1.8 1.90 0.2
3 3.0 0.0 2.7 0.7 1.3 3.0 2.85 –1.4
4 2.2 3.3 3.80 –2.7
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shows trace lines that correspond to parameter estimates (marked Item 2 
in Table 3.1) obtained by Thissen and Steinberg (1988) (and subsequently 
by Hoskens and Boeck (1997); see Baker and Kim (2004) for the details of 
maximum marginal likelihood parameter estimation) for a testlet compris-
ing two items from Bergan and Stone’s (1985) data obtained with a test of 
preschool mathematics proficiency. The two items required the child to iden-
tify the numerals 3 and 4; the curves are marked 0 for neither identified, 1 for 
3 identified but not 4, 2 for 4 identified but not 3, and 3 for both identified 
correctly. This is an example of a testlet with semiordered responses: The 0 
and 1 curves are proportional because their ak estimates are identical, indi-
cating that, except for an overall difference in probability of endorsement, 
they have the same relation to proficiency: Both may be taken as incorrect. If 
a child can identify 4 but not 3 (the 2 curve), that indicates a moderate, pos-
sibly developing, degree of mathematical proficiency, and both correct (the 
3 curve) increases as θ increases.

The lower left panel of Figure 3.1 shows trace lines that correspond to 
parameter estimates (marked Item 3 in Table 3.1) obtained by Thissen, 
Steinberg, and Mooney (1989) fitting the nominal model to the number-
correct score for the questions following each of four passages on a read-
ing comprehension test. Going from left to right, the model indicates that 
the responses are increasingly ordered for this number-correct scored testlet: 
Summed scores of 0 and 1 have nearly the same trace lines, because 0 (of 4) 
and 1 (of 4) are both scores that can be obtained with nearly equal probability 
by guessing on five-alternative multiple-choice items. After that, the trace 
lines look increasingly like those of a graded model. The lower right panel of 
Figure 3.1 is for a set of graded responses: It shows the curves that correspond 
to the parameter estimates for an extended constructed response mathemat-
ics item administered as part of the National Assessment of Educational 
Progress (NAEP) (Allen, Carlson, & Zelenak, 1999). The judged scores 
(from 0 to 4) were fitted with Muraki’s (1992, 1997) generalized partial 
credit (GPC) model, which is a constrained version of the nominal model. In 
Table 3.1, the parameters for this item (Item 4 in the two rightmost columns) 
have been converted into values of ak and ck for comparability with the other 
items’ parameters. The GPC model is an alternative to Samejima’s (1969, 
1997) graded model for such ordered responses; the two models generally 
yield very similar trace lines for the same data. In subsequent sections of this 
chapter we will discuss the relation between the GPC and nominal models 
in more detail.

Derivations of the Model
There are several lines of reasoning that lead to Equation 3.3 as an item 
response model. In this section we describe three kinds of theoretical 
argument that lead to the nominal model as the result, because they exist, 
and because different lines of reasoning appeal to persons with different 
backgrounds.
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As Statistical Mechanics
Certainly the simplest development of the nominal model is essentially 
atheoretical, treating the problem as abstract statistical model creation. To 
do this, we specify only the most basic facts: that we have categorical item 
responses in several (>2) categories, that we believe those item responses 
depend on some latent variable (θ) that varies among respondents, and that 
the mutual dependence of the item responses on that latent variable explains 
their observed covariance. Then “simple” mathematical functions are used to 
complete the model.

First, we assume that the dependence of some response process (value) for 
each person, for each item response alternative, is a linear function of theta

 z a ck k k= +θ  (3.7)

with unknown slope and intercept parameters ak and ck. Such a set of straight 
lines for a five-category item is shown in the left panel of Figure 3.2, using 
the parameters for Item 3 from Table 3.1.

To change those straight lines (zk) into a model that yields probabilities 
(between 0 and 1) for each response, as functions of θ, we use the so-called 
multivariate logistic link function

 

exp( )
exp( )

z
z

k

i i∑  (3.8)

This function (Equation 3.8) is often used in statistical models to trans-
form a linear model into a probability model for categorical data. It can be 
characterized as simple mathematical mechanics: Exponentiation of the val-
ues of zk makes them all positive, and then division of each of those positive 
line values by the sum of all of them is guaranteed to transform the straight 
lines in the left panel of Figure 3.2 into curves such as those shown in the 
right panel of Figure 3.2. The curves are all between 0 and 1, and sum to 1 
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FIGuRE 3.2 Left panel: Linear regressions of the response process zk on θ for five response alterna-
tives. Right panel: Multivariate logistic transformed curves corresponding to the five lines in the left 
panel.
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at all values of θ, as required. (The curves in the right panel of Figure 3.2 are 
those from the lower left panel of Figure 3.1. de Ayala (1992) has presented 
a similar graphic as his Figure 1.)

For purely statistically trained analysts, with no background in psycho-
logical theory development, this is a sufficient line of reasoning to use the 
nominal model for data analysis. Researchers trained in psychology may 
desire a more elaborated theoretical rationale, of which two are offered in the 
two subsequent sections.

However, it is of interest to note at this point that the development in this 
section, specifically Equation 3.7, invites the questions: Why linear? Why not 
some higher-order polynomial, like quadratic? Indeed, quadratic functions of 
θ have been suggested or used for special purposes as variants of the nominal 
model: Upon hearing a description of the multiple-choice model (Thissen & 
Steinberg, 1984) D. B. Rubin (personal communication, December 15, 1982) 
suggested that an alternative to that model would be a nominal model with 
quadratic functions replacing Equation 3.7. Ramsay (1995) uses a quadratic 
term in Equation 3.7 for the correct response alternative for multiple-choice 
items when the multivariate logistic is used to provide “smooth” information 
curves for the nonparametric trace lines in the TestGraf system. Sympson 
(1983) also suggested the use of quadratic, and even higher-order, polynomi-
als in a more complex model that never came into implementation or usage.

Nevertheless, setting aside multiple-choice items, for most uses of the 
nominal model the linear functions in Equation 3.7 are sufficient.

Relations With Thurstone Models

The original development of the nominal categories model by Bock (1972) 
was based on an extension of Thurstone’s (1927) case V model for binary 
choices, generalized to become a model for the first choice among three or 
more alternatives. Thurstone’s model for choice made use of the concept of 
a response process that followed a normal distribution, one value (process in 
Thurstone’s language) for each object. The idea was that the object or alter-
native selected was that with the larger value. In practice, a “comparatal” 
process is computed as the difference between the two response processes, 
and the first object is selected if the value of the comparatal process is greater 
than zero.

Bock and Jones (1968) describe many variants and extensions of Thur-
stone’s models for choice, including generalizations to the first choice from 
among several objects. The obvious generalization of Thurstone’s binary 

Relationship to Other Models: The term Thurstone models in polytomous IRT typically refers 
to models where response category thresholds characterize all responses above versus below a 
given threshold. In contrast, Rasch type models only characterize responses in adjacent categories. 
However, the Thurstone case V model, which is related to the development of the nominal categories 
model, is a very different type of Thurstone model–one without thresholds–highlighting the nominal 
categories model's unique place among polytomous IRT models.
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choice model to create a model for the first choice from among three or more 
objects would use a multivariate normal distribution of m − 1 comparatal pro-
cesses for object or alternative j, each representing a comparison of object j 
with one of the others of m objects. Then the probability of selection of alter-
native j would be computed as a multiple integral over that ( )m − 1 -dimen-
sional normal density, computing a value known as an orthant probability. 
However, multivariate normal orthant probabilities are notoriously difficult 
to compute, even for simplified special cases. Bock and Jones suggest sub-
stitution of the multivariate logistic distribution, showing that the bivariate 
logistic yields probabilities similar to those obtained from a bivariate normal 
(these would be used for the first choice of three objects). The substitution of 
the logistic here is analogous with the substitution of the logistic function for 
the normal ogive in the two-parameter logistic IRT model (Birnbaum, 1968). 
Of course, the multivariate logistic distribution function is Equation 3.1.

In the appendix to this chapter, Bock provides an updated and detailed 
description of the theoretical development of the nominal categories model as 
an approximation to the multivariate generalization of Thurstone’s model for 
choice. In addition, the appendix describes the development of the model that is 
obtained by considering first choices among three or more objects as an “extreme 
value” problem, citing the extension of Dubey’s (1969) derivation of the logistic 
distribution to the multivariate case that has been used and studied by Bock 
(1970), McFadden (1974), and Malik and Abraham (1973). This latter develop-
ment also ties the nominal categories model to the so-called Bradley-Terry-Luce 
(BTL) model for choice (Bradley & Terry, 1952; Luce & Suppes, 1965).

Thus, from the point of view of mathematical models for choice, the nom-
inal categories model is both an approximation to Thurstone (normal) mod-
els for the choice of one of three or more alternatives, and the multivariate 
version of the BTL model.

The Probability of a Response in One of Two Categories
Another derivation of the nominal model involves its implications for the 
conditional probability of a response in one category (say k) given that the 
response is in one of two categories (k or k′). This derivation is analogous in 
some respects to the development of Samejima’s (1969, 1997) graded model, 
which is built up from the idea that several conventional binary item response 
models may be concatenated to construct a model for multiple responses. In 
the case of the graded model, accumulation is used to transform the multiple 
category model into a series of dichotomous models: The conventional nor-
mal ogive or logistic model is used to describe the probability that a response 
is in category k or higher, and then those cumulative models are subtracted 
to produce the model for the probability the response is in a particular cat-
egory. This development of the graded model rests, in turn, on the theoreti-
cal development of the normal ogive model as a model for the psychological 
response process, as articulated by Lord and Novick (1968, pp. 370–373), 
and then on Birnbaum’s (1968) reiteration for test theory of Berkson’s (1944, 
1953) suggestion that the logistic function could usefully be substituted for 
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the normal ogive. (See Thissen and Orlando (2001, pp. 84–89) for a sum-
mary of the argument by Lord and Novick and the story behind the logistic 
substitution.)

The nominal model may be derived in a parallel fashion, assuming that 
the conditional probability of a response in one category (say k), given that 
the response is in one of two categories (k or k′), can be modeled with the 
two-parameter logistic (2PL). The algebra for this derivation “frontwards” 
(from the 2PL for the conditional responses to the nominal model for all of 
the responses) is algebraically challenging as test theory goes, but it is suf-
ficient to do it “backwards,” and that is what is presented here. (We note in 
passing that Masters (1982) did this derivation frontwards for the simpler 
route from the Rasch or one-parameter logistic (1PL) to the partial credit 
model.)

If one begins with the nominal model as stated in Equation 3.3, and 
writes the conditional probability for a response in category k given that the 
response is in one of categories k or k ′,

 
T k k k T k

T k T k
( | , ) ( )

( ) ( )
′ =

′ +  (3.9)

then only a modest amount of algebra (cancel the identical denominators, 
and then more cancellation to change the three exponential terms into one) is 
required to show that this conditional probability is, in fact, a two-parameter 
logistic function:

 
T k k k

a ck
c

k
c

( | , , )
exp

′ =
+ − +( ) 

1
1 θ  (3.10)

with

 c c ck
c

k k= −′  (3.11)

and

 a a ak
c

k k= − ′  (3.12)

Placing interpretation on the algebra, what this means is that the nomi-
nal model assumes that if we selected the subsample of respondents who 
selected either alternative k or k′, setting aside respondents who made other 
choices, and analyzed the resulting dichotomous item in that subset of the 
data, we would use the 2PL model for the probability of response k in that 
subset of the data. This choice, like the choice of the normal ogive or logistic 
model for the cumulative probabilities in the graded model, then rests on 
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the theoretical development of the normal ogive model as a psychologi-
cal response process model as articulated by Lord and Novick (1968), and 
Birnbaum’s (1968) argument for the substitution of the logistic. The dif-
ference between the two ways of dividing multiple responses into a series 
of dichotomies (cumulative vs. conditional) has been discussed by Agresti 
(2002).

An interesting and important feature of the nominal model is obtained by 
specializing the conditional probability for any pair of responses to adjacent 
response categories (k or k − 1; adjacent is meaningful if the responses are 
actually ordered); the same two-parameter logistic is obtained:

 
T k k k
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 a a ak
c

k k= − −( )1  (3.15)

It is worth noting at this point that the threshold bk
c  for the slope-threshold 

form of the conditional 2PL curve,
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which is also the crossing point of the trace lines for categories k and k − 1 
(de Ayala, 1993; Bock, 1997). These values are featured in some parameter-
izations of the nominal model for ordered data.

This fact defines the concept of order for nominal response categories: 
Response k is “higher” than response k − 1 if and only if a ak k> −1, which means 
that ac is positive, and so the conditional probability of selecting response k 
(given that it is one of the two) increases as θ increases. Basically this means 
that item analysis with the nominal model tells the data analyst the order of the 
item responses. We have already made use of this fact in discussion of order and 
the ak parameters in Figure 3.1 and Table 3.1 in the introductory section.
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Two additional examples serve to illustrate the use of the nominal model 
to determine the order of response categories, and the way the model may be 
used to provide trace lines that can be used to compute IRT scale scores (see 
Thissen, Nelson, Rosa, and McLeod, 2001) using items with purely nominal 
response alternatives.

Figure 3.3 shows the trace lines corresponding to item parameters 
obtained by Huber (1993) in his analysis of the item “Count down from 20 
by 3s” on the Short Portable Mental Status Questionnaire (SPMSQ ), a brief 
diagnostic instrument used to detect dementia. For this item, administered 
to a sample of aging individuals, three response categories were recorded: 
correct, incorrect (scored positively for this “cognitive dysfunction” scale), 
and refusal (NA). Common practice scoring the SPMSQ in clinical and 
research applications was to score NA as incorrect, based on a belief that 
respondents who refused to attempt the task probably could not do it. Huber 
fitted the three response categories with the nominal model and obtained 
the parameters a′ = [0.0, 1.56, 1.92] and c′ = [0.0, –0.52, 0.85]; the cor-
responding curves are shown in Figure 3.3. As expected, the ak parameter 
for NA is much closer to the ak parameter for the incorrect response, and 
the curve for NA is nearly proportional to the – curve in Figure 3.3. This 
analysis lends a degree of justification to the practice of scoring NA as incor-
rect. However, if the IRT model is used to compute scale scores, those scale 
scores reflect the relative evidence of failure provided by the NA response 
more precisely.

The SPMSQ also includes items that many item analysts would expect to 
be locally dependent. One example involves a pair of questions that require 
the respondent to state his or her age, and then his or her date of birth. Huber 
(1993) combined those two items into a testlet with four response categories: 
both correct (+ +), age correct and date of birth incorrect (+–), age incorrect 
and date of birth correct (–+), and both incorrect (––). Figure 3.4 shows the 
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FIGuRE 3.3 Trace lines corresponding to item parameters obtained by Huber (1993) in his analy-
sis of the item “Count down from 20 by 3s” on the Short Portable Mental Status Questionnaire 
(SPMSQ ).
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nominal model trace lines for the four response categories for that testlet. 
While one may confidently expect that the –– response reflects the highest 
degree of dysfunction and the ++ response the lowest degree of dysfunction, 
there is a real question about the scoring value of the +– and –+ responses. 
The nominal model analysis indicates that the trace lines for +– and –+ are 
almost exactly the same, intermediate between good and poor performance. 
Thus, after the analysis with the nominal model one may conclude that this 
testlet yields four response categories that collapse into three ordered scoring 
categories: ++, [+– or –+], and ––.

Alternative Parameterizations, With uses
Thissen and Steinberg (1986) showed that a number of other item response 
models may be obtained as versions of the nominal model by imposing con-
straints on the nominal model’s parameters, and further that the canonical 
parameters of those other models may be made the αs and γs estimated for 
the nominal model with appropriate choices of T matrices. Among those 
other models are Masters’ (1982) partial credit (PC) model (see also Masters 
and Wright, 1997) and Andrich’s (1978) rating scale (RS) model (see also 
Andersen (1997) for relations with proposals by Rasch (1961) and Andersen 
(1977)). Thissen and Steinberg (1986) also mentioned in passing that a ver-
sion of the nominal model like the PC model, but with discrimination 
parameters that vary over items, is also within the parameter space of the 
nominal model. That latter model was independently developed and used in 
the 1980s by Muraki (1992) and called the generalized partial credit (GPC) 
model, and by Yen (1993) and called the two-parameter partial credit (2PPC) 
model.
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FIGuRE 3.4 Nominal model trace lines for the four response categories for Huber’s (1993) SPMSQ 
testlet scored as reporting both age and date of birth correctly (++), age correctly and date of birth 
incorrectly (+–), age incorrectly and date of birth correctly (–+), and both incorrectly (––).
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More on Ordered Versions of the Nominal Model—Rating 
Scale and (Generalized) Partial Credit Models

Muraki (1992, 1997) has used several parameterizations to describe the GPC 
model, among them
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with the constraint that
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in which
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Muraki’s parameterization of the GPC model is closely related to Masters’ 
(1982) specification of the PC model:
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Notational Difference: Remember this model was presented slightly differently in Chapter 2:
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Notational Difference: Here the authors use θ to refer to the latent variable of interest where 
Masters (see Equations 5.22 and 5.23 in Chapter 5) and Andrich (see Equations 6.24 and 6.25 in 
Chapter 6) typically refer to the latent variable using β. This θ/β notational difference will be seen in 
other chapters and is common in IRT literature.
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with the constraint
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Andrich’s (1978) RS model is
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with the constraints
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Thissen and Steinberg (1986)
Thissen and Steinberg (1986) described the use of alternative T matrices in 
the formulation of the nominal model. For example, when formulated for 
marginal estimation following Thissen (1982), Masters’ (1982) PC model 
and Andrich’s (1978) RS model use a single slope parameter that is the coef-
ficient for a linear basis function:
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Masters’ (1982) PC model used a parameterization for the threshold param-
eters that can be duplicated, up to proportionality, with this T matrix for the cs:

 

m m× −
=

−
− −

− − −













( )
( )

1

0 0 0
1 0 0
1 1 0

1 1 1

Tc PC


…
…

  
 







 (3.28)

Y102002_Book.indb   56 2/17/10   4:27:01 PM



The Nominal Categories Item Response Model    ■    57

Andrich’s RS model separated an overall item location parameter from a 
set of parameters describing the category boundaries for the item response 
scale; the latter were constrained equal across items, and may be obtained, 
again up to proportionality, with
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Andrich (1978, 1985) and Thissen and Steinberg (1986) described the use 
of a polynomial basis for the cs as an alternative to Tc RS-C( ) that “smooths” 
the category boundaries; the overall item location parameter is the coefficient 
of the first (linear) column, and the coefficients associated with the other 
columns describe the response category boundaries:
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Polynomial contrasts were used by Thissen et al. (1989) to obtain the trace 
lines for summed score testlets for a passage-based reading comprehension 
test; the trace lines for one of those testlets are shown as the lower left panel 
of Figure 3.1 and the right panel of Figure 3.2. The polynomial contrast set 
included only the linear term for the aks and the linear and quadratic terms 
for the cks for that testlet; that was found to be a sufficient number of terms 
to fit the data. This example illustrates the fact that, although the nomi-
nal model may appear to have many estimated parameters, in many situa-
tions a reduction of rank of the T matrix may result in much more efficient 
estimation.

Terminology Note: The authors use the term threshold here, whereas in other chapters these 
parameters are sometimes referred to as step or boundary parameters.
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A New Parameterization for the Nominal Model
After three decades of experience with the nominal model and its applica-
tions, a revision to the parameterization of the model would serve several pur-
poses: Such a revision could be used first of all to facilitate the extension of the 
nominal model to become a multidimensional IRT (MIRT) model, a first for 
purely nominal responses. In addition, a revision could make the model easier 
to explain. Further, by retaining features that have actually been used in data 
analysis, and discarding suggestions (such as many alternative T matrices) that 
have rarely or never been used in practice, the implementation of estimation 
algorithms for the model in software could become more straightforward.

Thus, while the previous sections of this chapter have described the nomi-
nal model as it has been, and as it has been used, this section presents a new 
parameterization that we expect will be implemented in the next generation 
of software for IRT parameter estimation. This is a look into the future.

Desiderata
The development of the new parameterization for the nominal model was 
guided by several goals, combining a new insight with experience gained 
over the last 30 years of applications of the model:

 1. The dominating insight is that a kind of multidimensional nominal 
model can be created by separating the a parameterization into a single 
overall (mutliplicative) slope or discrimination parameter, that is then 
expanded into vector form to correspond to vector θ, and a set of m − 2 
contrasts among the a parameters that represent what Muraki (1992) 
calls the scoring functions for the responses. This change has the added 
benefit that, for the first time, the newly reparameterized nominal 
model has a single discrimination parameter comparable to those of 
other IRT models. That eases explanation of results of item analysis 
with the model.

 2. In the process of accomplishing Goal 1, it is desirable to parameterize 
the model in such a way that the scoring function may be (smoothly) 
made linear ( , , , , )0 1 2 1 m −  so that the multiplicative overall slope 
parameter becomes the slope parameter for the GPC model, which, 
constrained equally across items, also yields the PC and RS models. 
In addition, with this scoring function the overall slope parameter may 
meaningfully be set equal to the (also equal) slope for a set of 2PL items 
to mimic Rasch family mixed models.

 3. We have also found it useful at times in the past 20 years to use models 
between the highly constrained GPC model and the full-rank nominal 
model, as suggested by Thissen and Steinberg (1986), most often by 
using polynomial bases for the a and c parameters and reducing the 
number of estimated coefficients below full rank to obtain “smoothly 
changing” values of the a and c parameters across response categories. 
It is desirable to retain that option.
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 4. With other sets of data, we have found it useful to set equal subsets 
of the a or c parameters within an item, modeling distinct response 
categories as equivalent for scoring (the a parameters are equal) or alto-
gether equivalent (both the a and c parameters are equal).

Obtaining Goals 3 and 4 requires two distinct parameterizations, both 
expressed as sets of T matrices; Goals 1 and 2 are maintained in both 
parameterizations.

The New Parameterization
The new parameterization is
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and a∗ is the overall slope parameter, ak
s
+1  is the scoring function for response 

k, and ck+1 is the intercept parameter as in the original model. The equating 
following restrictions for identification,

 a a m cs
m
s

1 0 1 0= = − =, , and 1  (3.33)

are implemented by reparameterizing, and estimating the parameters α and γ:

 a = T c = Ts ` fand  (3.34)

the Fourier Version for Linear Effects and Smoothing
To accomplish Goals 1 to 3, we use a Fourier basis as the T matrix, aug-
mented with a linear column:
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in which fki is

 f i k mki = − − −sin[ ( )( )/( )]π 1 1 1  (3.36)

and α1 1= . Figure 3.5 shows graphs of the linear and Fourier functions for 
four categories (left panel) and six categories (right panel). The Fourier-based 
terms functionally replace quadratic and higher-order polynomial terms that 
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we have often used to smooth sequences of ak and ck parameters with a more 
numerically stable, symmetrical orthogonal basis.

The new parameterization, using the Fourier T matrix, provides several 
useful variants of the nominal model: When a m

∗
−,{ , },α α2 1… , and γ are 

estimated parameters, this is the full-rank nominal model. If { , , }α α2 1… m−  are 
restricted to be equal to zero, this is a reparameterized version of the GPC 
model. The Fourier basis provides a way to create models between the GPC 
and nominal model, as were used by Thissen et al. (1989), Wainer, Thissen, 
and Sireci (1991), and others.

Useful Derived Parameters
When the linear-Fourier basis TF is used for both

 a = T c = Ts
F F` fand  (3.37)

with α1 1=  and α α2 1 0, ,… m− = , then the parameters of the GPC model
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may be computed as
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FIGuRE 3.5 Graphs of the linear and Fourier basis functions for the new nominal model parameter-
ization, for four categories (left panel) and six categories (right panel); the values of T at integral values 
on the Response axis are the elements of the T matrix of Equations 3.35 and 3.36.
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for k m= −2 1,...,  (noting that d1 0=  and c1 0=  as constraints for identifica-
tion). (Childs and Chen (1999) provided formulae to convert the parameters 
of the original nominal model into those of the GPC model, but they used 
the T matrices in the computations, which is not essential in the simpler 
methods given here.)

Also note that if it desired to constrain the GPC parameters dk to be 
equal across a set of items, that is accomplished by setting the parameter 
sets γ γ2 1,..., m−  equal across those items. This kind of equality constraint 
really only makes sense if the overall slope parameter a∗ is also set equal 
across those items, in which case bi a

i= −
∗

γ ,1  reflects the overall difference in 
difficulty, which still varies over items i. (Another way to put this is that the 
linear-Fourier basis separates the parameter space into a (first) component 
for bi a

i

i
= −

∗
γ ,1 and a remainder that parameterizes the “spacing” among the 

thresholds or crossover points of the curves.)
The alternative parameterization of the GPC
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in which
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simply substitutes Kk parameters that may be computed from the values of 
di. Note that the multiplication of the parameter b by the scoring function 
Tk provides another explanation of the fact that with the linear-Fourier basis 
bi a

i= −
∗

γ , .1

To provide translations of the parameters for Rasch family models, some 
accommodation must be made between the conventions that the scale of the 
latent variable is usually set for more general models by specifying the θ is 
distributed with mean zero and variance one, versus many implementations 
of Rasch family models with the specification that some item’s difficulty is 
zero, or the average difficulty is zero, and the slope is one, leaving the mean 
and variance of the θ distribution unspecified, and estimated.

If we follow the approach taken by Thissen (1982) that a version of Rasch 
family models may be obtained with the specification that θ is distributed 
with mean zero and variance one, estimating a single common slope param-
eter (a* in this case) for all items, and all items’ difficulty parameters, then the 
c parameters of Masters’ PC model are

 δk kb d= −  (3.44)
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(in terms of the parameters of Muraki’s GPC model) up to a linear transfor-
mation of scale, and the δ and τ parameters of Andrich’s RS model are

 δ = b  (3.45)

and

 τk kd= −  (3.46)

again up to a linear transformation of scale.

the Identity-Based T Matrix for Equality Constraints
To accomplish Goals 1, 2, and 4, involving equality constraints, we use T 
matrices for as as of the form
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with the constraint that α1 1= . If it is desirable to impose equality con-
straints in addition on the cs, we use the following T matrix:
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This arrangement provides for the following variants of the nominal 
model, among others: When a∗, { ,..., }α α2 1m− , and γ are estimated param-
eters, this is again the full-rank nominal model. If αi i=  for { ,..., }α α2 1m− , 
this is a reparameterized version of the generalized partial credit model.

The restriction a as s
1 2=  is imposed by setting α2 0= . The restriction 

a am
s

m
s

− =1  is imposed by setting α( )m m− = −1 1. For the other values of as the 
restriction a ak

s
k
s

′ =  is imposed by setting α α′ =k k .

Illustrations
Table 3.2 shows the values of the new nominal model parameters for the 
items with trace lines in Figure 3.1 and the original parameters in Table 3.1. 
Note that the scoring parameters in as for Items 1 and 4 are [ , , ,..., ],0 1 2 1m −  
indicating that the nominal model for those two items is one for strictly 
ordered responses. In addition, we observe that the lower discrimination 
of Item 3 (with trace lines shown in the lower left panel of Figure 3.1) is 
now clearly indicated by the relatively lower value of a ∗; the discrimination 
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parameter for Item 3 is only 0.55, relative to values between 0.9 and 1.0 for 
the other three items. The values of the c parameters are unchanged from 
Table 3.1. If the item analyst wishes to convert the parameters for Item 3 
in Table 3.2 to those previously used for the GPC model, Equations 3.3 to 
3.41 may be used.

Multidimensionality and the Nominal Model
The new parameterization of the nominal model is designed to facilitate mul-
tidimensional item factor analysis (or MIRT analysis) for items with nomi-
nal responses, something that has not heretofore been available (Cai, Bock, 
& Thissen, in preparation). A MIRT model has a vector-valued p—two or 
more dimensions in the latent variable space that are used to explain the 
covariation among the item responses. Making use of the separation of the 
new nominal model parameterization of overall item discrimination param-
eter (a*) from the scoring functions (in as), the multidimensional nominal 
model has a vector of discrimination parameters a*, one value indicating the 
slope in each direction of the p-space. This vector of discrimination param-
eters taken together indicates the direction of highest discrimination of the 
item, which may be along any of the θ axes or between them.

The parameters in as remain unchanged: Those represent the scoring func-
tions of the response categories and are assumed to be the same in all direc-
tions in the  p-space. So the model remains nominal in the sense that the 
scoring functions may be estimated from the data. The intercept parameter 
c also remains unchanged, taking the place of the standard unitary intercept 
parameter in a MIRT model.

Assembled in notation, the nominal MIRT model is

 
T u k T k z
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exp( )
= = =

∑
∗p a a cs, ,  (3.49)

modified from Equation 3.3 with vector a* and vector p, in which

 z a ck k
s

k= ′ +a * p  (3.50)

TABLE 3.2 Item Parameters for the New Parameterization of the Nominal Model, 
for the Same Items With the Original Model Parameters in Table 3.1

Parameter Item 1 Item 2 Item 3 Item 4

   a* 1.0 0.9 0.55    0.95

as
1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.0

as
2 c2 1.0 0.0 0.0 –0.9 0.36 0.5 1.00 1.2

as
3 c3 2.0 0.0 1.2 –0.7 1.27 1.8 2.00 0.2

as
4 c4 3.0 0.0 3.0 0.7 2.36 3.0 3.00 –1.4

as
5 c5 4.00 3.3 4.00 –2.7
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This is a nominal response model in the sense that, for any direction in 
the p space, a cross section of the trace surfaces may take the variety of shapes 
provided by the unidimensional nominal model. Software to estimate the 
parameters of this model is currently under development. When completed 
this model will permit the empirical determination of response alternative 
order in the context of multidimensional p. If an ordered version of the model 
is used, with scoring functions [ , , ,..., ]0 1 2 1m − , this model is equivalent to 
the multidimensional partial credit model described by Yao and Schwarz 
(2006).

Conclusion
Reasonable questions may be raised about why the new parameterization of 
the nominal model has been designed as described in the preceding section; 
we try to answer some of the more obvious of those questions here:

Why is the linear term of the T matrix scaled between zero and m − 1, as opposed 
to some other norming convention? It is planned that the implementation of 
estimation for this new version of the nominal model will be in general 
purpose computer software that, among other features, can “mix models,” 
for example, for binary and multiple-category models. We also assume that 
the software can fix parameters to any specified value, or set equal any sub-
set of the parameters. Some users may want to use Rasch family (Masters 
and Wright, 1984) models, mixing the original Rasch (1960) model for the 
dichotomous items and the PC or RS models for the polytomous items. To 
accomplish a close approximation of that in a marginal maximum likelihood 
estimation system, with a N ( , )0 1  population distribution setting scale for 
the latent variable, a common slope (equal across items) must be specified 
for all items (Thissen, 1982). For the dichotomous items that scope param-
eter is for the items scored 0 1, ; for the polytomous items it is for item scores 
0 1 1, , ,( ).… m −  Thus, scaling the linear component of the scoring function 
with unit steps facilitates the imposition of the equality constraints needed 
for mixed Rasch family analysis. It also permits meaningful equality con-
straints between discrimination parameters for different item response mod-
els that are not in the Rasch family.

In the MIRT version of the model, the a∗ parameters may be rescaled 
after estimation is complete, to obtain values that have the properties of fac-
tor loadings, much as has been done for some time for the dichotomous 
model in the software TESTFACT (du Toit, 2003).

Why does the user need to prespecify both the lowest and highest response cat-
egory (to set up the T matrix) for a nominal model? This is not as onerous as it 
may first appear: When fitting the full-rank nominal model, one does not 
have to correctly specify highest and lowest response categories. If the data 
indicate another order, estimated values of ak

s  may be less than zero or exceed 
m − 1, indicating the empirical scoring order. It is only necessary that the 
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item analyst prespecify two categories that are differently related to θ, such 
that one is relatively lower and the other relatively higher—but even which 
one is which may be incorrect, and that will appear as a negative value of ai

∗. 
Presumably, when fitting a restricted (ordered) version of the model, the user 
would have already fitted the unrestricted nominal model to determine or 
check the empirical order of the response categories, or the user would have 
confidence from some other source of information about the order.

Why not parameterize the model in slope-threshold form, instead of 
slope-intercept form? Aren’t threshold parameters easier to interpret in IRT? 
While we fully understand the attraction, in terms of interpretability, for 
threshold-style parameters in IRT models, there are several good reasons 
to parameterize with intercepts for estimation. The first (oldest historically) 
reason is that the slope-intercept parameterization is a much more numeri-
cally stable arrangement for estimating the parameters of logistic models, 
due to a closer approximation of the likelihood to normality and less error 
correlation among the parameters. A second reason is that the threshold 
parameterization does not generalize to the multidimensional case in any 
event; there is no way in a MIRT model to “split” the threshold among 
dimensions, rendering a threshold parameterization more or less meaning-
less. We note here that, for models for which it makes sense, we can always 
convert the intercept parameters into the corresponding item location and 
threshold values for reporting, and in preceding sections we have given for-
mulas for doing so for the GPC model.

Why not use polynomial contrasts to obtain intermediate models, as proposed by 
Thissen and Steinberg (1986) and implemented in MULTILOG (du Toit, 2003), 
instead of the Fourier basis? An equally compelling question is to ask: Why 
polynomials? The purpose of either basis is to provide smooth trends in the as 
or cs across a set of response categories. Theory is not sufficient at this time to 
specify a particular mathematic formulation for smoothness across catego-
ries in the nominal model. The Fourier basis accomplishes that goal as well 
as polynomials, and is naturally orthogonal, which (slightly) simplifies the 
implementation of the estimation algorithm.

In this chapter we have reviewed the development of Bock’s (1972) nomi-
nal model, described its relation with other commonly used item response 
models, illustrated some of its unique uses, and provided a revised param-
eterization for the model that we expect will render it more useful for future 
applications in item analysis and test scoring. As IRT has come to be used in 
more varying contexts, expanding its domain of application from its origins 
in educational measurement into social and personality psychology, and the 
measurement of health outcomes and quality of life, the need to provide 
item analysis for items with polytomous responses with unknown scoring 
order has increased. The reparameterized nominal model provides a useful 
response to that challenge. Combined with the development of multidimen-
sional nominal item analysis (Cai et al., in preparation), the nominal model 
represents a powerful component among the methods of IRT.
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Appendix 1: Background of the Nominal Categories Model

R. Darrell Bock

The first step in the direction of the nominal model was an extension of 
Thurstone’s (1927) method of paired comparisons to first choices among 
three or more objects. The objects can be anything for which subjects could 
be expected to have preferences—opinions on public issues, competing con-
sumer products, candidates in an election, and so on. The observations for 
a set of m objects consist of the number of subjects who prefer object j to 
object k and the number who prefer k to j. Any given subject does not neces-
sarily have to respond to all pairs. Thurstone proposed a statistical model for 
choice in which differences in the locations of the objects on a hypothetical 
scale of preference value predict the observed proportions of choice in all 
m m( )/− 1 2 distinct pairs. He assumed that a subject’s response to the task of 
choosing between the objects depended upon a subjective variable for, say, 
object j,

 v j j j= +µ ε  (3.51)

where, in the population of respondents, εj is a random deviation distributed 
normally with mean 0 and variance σ2. He called this variable a response pro-
cess and assumed that the subject chooses the object with the larger process. 
Although the distribution of  νj might have different standard deviations for 
each object and nonzero correlations between objects, this greatly compli-
cates the estimation of differences between the means. Thurstone therefore 
turned his attention to the case V model in which the standard deviations 
were assumed equal and all correlations assumed zero in all comparisons. 
With this simplification, the so-called comparatal process

 v v vjk j k= −  (3.52)

has mean µ µj k−  and standard deviation 2σ, and the comparatal pro-
cesses v vjk jl,  for object j have constant correlation ½. Thurstone’s solution to 
the estimation problem was to convert the response proportions to normal 
deviates and estimate the location differences by unweighted least squares, 
which requires only m2 additions and m divisions. With modern computing 
machinery, solutions with better properties (e.g., weighted least squares or 
maximum likelihood) are now accessible (see Bock & Jones, 1968, Section 
6.4.1). From the estimated locations, the expected proportions for each com-
parison are given by the cumulative normal distribution function, Φ( ),y  at 
y j k= −( )µ µ . These proportions can be used in chi-square tests of the good-
ness of fit of the paired comparisons model (Bock, 1956) (Bock & Jones, 
1968, section 6.7.1).
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Extension to First Choices
The natural extension of the paired comparison case V solution to what 
might be called the “method of first choices,” that is, the choice of one pre-
ferred object in a set of m objects is simply to assume the m − 1 comparatal 
processes for object j,

 v v v k m k jjk j k= − = ≠, , , , ;1 2…  (3.53)

is distributed ( )m − 1 -variate normal with means µ µj k− , constant variance 
2σ2, and constant correlation ρjk equal to ½ (Bock, 1956; 1975, Section 8.1.3). 
Expected probabilities of first choice for a given object then correspond to the 
( )m − 1 -fold multiple integral of the ( )m − 1 -variate normal density function 
in the orthant from minus infinity up to the limits equal to the comparatal 
means.

For general multivariate normal distributions of high dimensionality, 
evaluation of orthant probabilities is computationally challenging even with 
modern equipment. Computing formulae and tables exit for the bivariate 
case (National Bureau of Standards, 1956) and the trivariate case (Steck, 
1958), but beyond that, Monte Carlo approximation of the positive orthant 
probabilities appears to be the only recourse at the present time. Fortunately, 
much simpler procedures based upon a multivariate logistic distribution are 
now available for estimating probabilities of first choice. By way of intro-
duction, the following section gives essential results for the univariate and 
bivariate logistic distributions.

The univariate Logistic Distribution
Applied to the case V paired comparisons model, the univariate logistic dis-
tribution function can be expressed either in terms of the comparatal process 
z u jk= :

 
Ψ( )z

e z=
+ −
1

1
 (3.54)

or in terms of the separate processes z v j1 =  and z vk2 = :

 
Ψ( )z e

e e

z

z z1

1

1 2
=

+
 (3.55)

under the constraint z z1 2 0+ = . Then z z1 2= −  and

 
Ψ Ψ( ) ( )z z e

e e

z

z z2 11
2

1 2
= − =

+
 (3.56)
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In either case the distribution is symmetric with mean z = 0, where 
Ψ( )z = 1

2 , and variance π2
3 .  The deviate z is called a logit, and the pair z z1 2,  

could be called a binomial logit.
The corresponding density function can be expressed in terms of the dis-

tribution function:

 
ψ( )

( )
( )[ ( )]z e

e
z z

z

z=
+

= −
−

−1
12 Ψ Ψ  (3.57)

Although ψ( )z  is heavier in the tails than φ( ), ( )z zΦ  closely resembles 
Ψ( . )1 7z . Using the scale factor 1.7 in place of the variance matching factor 
1.81379 will bring the logistic probabilities closer to the normal over the full 
range of the distribution, with a maximum absolute difference less than 0.01 
(Johnson, Kotz, & Balakrishnan, 1995, p. 119).

An advantage of the logistic distribution over the normal is that the deviate 
corresponding to an observed proportion, P, is simply the log odds,

 
z P P

P
( ) =

−
log

1  (3.58)

For that reason, logit linear functions are frequently used in analysis of g 
binomially distributed data (see Anscombe, 1956).

Inasmuch as the prediction of first choices may be viewed as an extreme 
value problem, it is of interest that Dubey (1969) derived the logistic distribu-
tion from an extreme value distribution of the double exponential type with 
mixing variable γ. Then the cumulative extreme value distribution function, 
conditional on γ, is

 F x x( | ) exp[ exp( )]γ γ= − −  (3.59)

where γ has the exponential density function g( ) exp( )γ γ= − . The corre-
sponding extreme value density function is

 f x x x( | ) exp( )[ exp( exp( ))],γ γ γ γ γ= − − − − > 0  (3.60)

Integrating the conditional distribution function over the range of g gives 
the distribution function of x:

 F x F x g d x( ) ( | ) ( ) [ ( )]= ∫ = + −∞ −
0 expγ γ γ 1 1  (3.61)

which we recognize as the logistic distribution.
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A Bivariate Logistic Distribution
The natural extension of the logistic distribution to the bivariate case is

 Ψ( , ) [ ]x x e ex x
1 2

11 1 2= + +− − −  (3.62)

with marginal distributions Ψ( )x1  and Ψ( )x2 . The density function is

 ψ( , ) ( , )x x x x e x x
1 2

3
1 22 1 2= − −Ψ  (3.63)

and regression equations and corresponding conditional variances are

 E x x z( | ) ( )1 2 21= + logΨ  (3.64)

 E x x z( | ) ( )2 1 11= + logΨ  (3.65)

 
V x x V x x( | ) ( | )1 2 2 1

2

3
1= = −π

 (3.66)

This distribution is the simplest of three bivariate logistic distributions 
studied in detail by Gumbel (1961). It is similar to the bivariate normal dis-
tribution in having univariate logistic distributions as margins, but unlike 
the normal, the bivariate logistic density is asymmetric and the regression 
lines are curved (see Figure 3.6). Nevertheless, the distribution function 
gives probability values reasonably close to bivariate normal values when 
the 1.7 scale correction is used (see Bock and Jones (1968, Section 9.1.1) for 
some comparisons of bivariate normal and bivariate logistic probabilities).

A Multivariate Logistic Distribution
The natural extension of the bivariate logistic distribution to higher dimen-
sions is

 
Ψ( ) , , , ,z =

+ + +
=e

e e e
k m

z

z z z

k

m1 2
1 2

…
…  (3.67)
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FIGuRE 3.6 Contours of the bivariate logistic density. The horizontal and vertical axes are x1 and x2 
respectively, in Equation 3.64.
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where the elements of the vector z = ′[ , , , ]z z zm1 2 …  are constrained to sum to 
zero. This vector is referred to as a multinomial logit.

Although this extension of the logistic distribution to dimensions greater 
than two has been applied at least since 1967 (Bock, 1970; McFadden, 1974), 
its first detailed study was by Malik and Abraham (1973). They derived the 
m-variate logistic distribution from the m-fold product of independent uni-
variate marginal conditional distributions of the Dubey (1969) extreme value 
distribution with mixing variable γ. Integrating over γ gives

 
F F x g d ej

k

m
x

k

m
k( ) ( | ) ( )X = ∫ = +













−∞
∞

=

−

=
∏ ∑γ γ γ

1 1

1
−−

= =
1

1, m n  (3.68)

The corresponding density function is

 
f m x ek

k

m
x

k

m m

k( ) !expΧΧ = −












+










=

−

=

−

∑ ∑
1 1

1
−−1

 (3.69)

McFadden (1974) arrived at the same result by essentially the same 
method, although he does not cite Dubey (1969). Gumbel’s bivariate distri-
bution (above) is included for n = 2, and margins of all orders up to n − 1 are 
multivariate logistic and all univariate margins have mean zero and variance 
π2
3 . No comparison of probabilities for high-dimensional normal and logistic 

distributions has as yet been attempted.

Estimating Binomial and Multinomial Response Relations
If we substitute functions of external variables for normal or logistic devi-
ates, we can study the relationships of these variables to the probabilities 
of first choice among the objects presented. In the two-category case, we 
refer to these as binomial response relations, and with more than two cat-
egories, as multinomial response relations. The analytical problem becomes 
one of estimating the coefficients of these functions rather than the logit 
itself. If the relationship is less than perfect, some goodness of fit will be lost 
relative to direct estimation of the logit (which is equivalent to estimating 
the category expected probabilities). The difference in the Pearson or likeli-
hood ratio chi-square provides a test of statistical significance of the loss. 
Examples of weighted least squares estimation of binomial response relations 
in paired comparison data when the external variables represent a factorial or 
response surface design on the objects are shown in Section 7.3 of Bock and 
Jones (1968). Examples of maximum likelihood estimation of multinomial 
response relations appear in Bock (1970), McFadden (1974), and Chapter 8 
of Bock (1975).
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An earlier application of maximum likelihood in estimating binomial 
response relations appears in Bradley and Terry (1952). They assume the 
model

 

π
π π

j

j k+  (3.70)

for the probability that object j is preferred to object k, but they estimated 
πj and πk directly rather than exponentiating in order to avoid introducing a 
Lagrange multiplier to constrain the estimates to sum to unity.

Luce and Suppes (1965) generalized the Bradley-Terry model to multi-
nomial data,

 

π
π π π

j

m1 2+ + +...  (3.71)

but did not make the exponential transformation to the multinomial logit 
and did not apply the model in estimating multinomial response relations.

Binomial and Multinomial Response Relations in the Context of IRT
In item response theory we deal with data arising from two-stage sampling: 
in the first stage we sample respondents from some identified population, and 
in the second stage we sample responses of each respondent to some num-
ber of items, usually items from some form of psychological or educational 
test. Thus, there are two sources of random variation in the data—between 
respondents and between item responses. When the response is scored 
dichotomously, right/wrong or yes/no, for example, the logistic distribution 
for binomial data applies. If the scoring is polytomous, as when the respon-
dent is choosing among several alternatives, for instance, in a multiple-choice 
test with recording of each choice, the logistic distribution for multinomial 
data applies. If the respondent’s level of performance is graded polytomously 
in ordered categories, the multivariate logistic can still apply, but its parame-
terization must be specialized to reflect the assumed order of the categories.

In IRT the “external” variable is not an observable quantity, but rather 
an unobservable latent variable, usually designated by θ, that measures the 
respondent’s ability or other propensity. The binomial or multinomial logit 
is expressed as linear functions of θ containing parameters specific to each 
item. We refer to the functions that depend on θ as item response models. 
Item response models now in use (see Bock & Moustaki, 2007) include, 
for item j, the two-parameter logistic model, based on the binomial logistic 
distribution,

 Ψ( ) [ exp( )]θ θ= + + −1 1a cj j  (3.72)
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and the nominal categories model, based on the multinomial logistic 
distribution,

 
Ψ( )

exp( )
exp( )

θ
θ

θ
=

+
∑ +=

a c
a c

jk jk

l
n

jl jl1
 (3.73)

under the constraints ∑ = ∑ == =l
n

jl l
n

jla c1 10 0and .
In empirical applications, the parameters of the item response models 

must be estimated in large samples of the two-stage data. Estimation of these 
parameters is complicated, however, by the presence of the propensity vari-
able θ, which is random in the first-stage sample. Because there are poten-
tially different values of this variable for every respondent, there is no way 
to achieve convergence in probability as number of respondents increases. 
We therefore proceed in the estimation by integrating over an assumed or 
empirically derived distribution of the latent variable. If the first-stage sam-
ple is large enough to justify treating the parameter estimates so obtained as 
fixed values, we can then use Bayes or maximum likelihood estimation to 
locate each respondent on the propensity dimension, with a level of precision 
dependent on the number of items.

The special merit of the nominal categories item response model is that no 
assumption about the order or other structure of the categories is required. 
Given that the propensity variable is one-dimensional and an ordering of 
the categories is implicit in the data and is revealed by the order of the coef-
ficients ajk in the nominal model (see Bock & Moustaki, 2007).
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